Gap junctions modulate glioma invasion by direct transfer of microRNA
نویسندگان
چکیده
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.
منابع مشابه
Direct gap junction communication between malignant glioma cells and astrocytes.
Gap junctions are intercellular channels that connect the interiors of coupled cells. We sought to determine the extent to which malignant glioma cells form gap junction channels with astrocytes from either adult human brain or rat forebrain. The astrocytic gap junction protein, connexin 43 (Cx43), was identified in immunoreactive plaques at areas of cell-to-cell contact between cocultured glio...
متن کاملcAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کاملTransfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions
Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the tran...
متن کاملPii: S0736-5748(99)00024-6
ÐGliomas are lethal because of local invasion into brain parenchyma. Glioma cells were isolated from dierent regions (white matter, gray matter and tumor core) of a glioma-bearing dog brain. Individual clonal cell lines were established from each area, and characterized for growth, migration and gap junctions. The regional clonal cell lines diered in rates and preferred substrate for migratio...
متن کاملThe Microvascular Gap Junction Channel: A Route to Deliver MicroRNAs for Neurological Disease Treatment
Brain microvascular endothelial cells (BMECs) separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules ...
متن کامل